Релятивистский импульс и релятивистская энергия. Основной закон релятивистской динамики. Релятивистская энергия. Задачи для самостоятельного решения

Немного выше мы показали, что зависимость массы от скорости и законы Ньютона приводят к тому, что изменения в кинетической энергии тела, появляющиеся в результате работы приложенных к нему сил, оказываются всегда равными

Предположим, что наши два тела с равными массами (те, которые столкнулись) можно «видеть» даже тогда, когда они оказываются внутри тела М. Скажем, протон с нейтроном столкнулись, но все еще продолжают двигаться внутри М. Масса тела М, как мы обнаружили, равна не 2m 0 , a 2m ω . Этой массой 2m ω снабдили тело его составные части, чья масса покоя была 2m 0 ; значит, избыток массы составного тела равен привнесенной кинетической энергии. Это означает, конечно, что у энергии есть инерция. Ранее мы говорили о нагреве газа и показали, что поскольку молекулы газа движутся, а движущиеся тела становятся массивнее, то при нагревании газа и усилении движения молекул газ становится тяжелее. Но на самом деле такое рассуждение является совершенно общим; наше обсуждение свойств неупругого соударения тоже показывает, что добавочная масса появляется всегда, даже тогда, когда она не является кинетической энергией. Иными словами, если две частицы сближаются и при этом образуется потенциальная или другая форма энергии, если части составного тела замедляются потенциальным барьером, производя работу против внутренних сил, и т. д.,— во всех этих случаях масса тела по-прежнему равна полной привнесенной энергии. Итак, вы видите, что выведенное выше сохранение массы равнозначно сохранению энергии, поэтому в теории относительности нельзя говорить о неупругих соударениях, как это было в механике Ньютона. Согласно механике Ньютона, ничего страшного не произошло бы, если бы два тела, столкнувшись, образовали тело с массой 2m 0 , не отличающееся от того, какое получилось бы, если их медленно приложить друг к другу. Конечно, из закона сохранения энергии мы знаем, что внутри тела имеется добавочная кинетическая энергия, но по закону Ньютона на массу это никак не влияет. А теперь выясняется, что это невозможно: поскольку до столкновения у тел была кинетическая энергия, то составное тело окажется тяжелее; значит, это будет уже другое тело. Если осторожно приложить два тела друг к другу, то возникает тело с массой 2m 0 ; когда же вы их с силой столкнете, то появится тело с большей массой. А если масса отличается, то мы можем это заметить. Итак, сохранение импульса в теории относительности с необходимостью сопровождается сохранением энергии.

Отсюда вытекают интересные следствия. Пусть имеется тело с измеренной массой М, и предположим, что что-то стряслось и оно распалось на две равные части, имеющие скорости ω и массы m ω . Предположим теперь, что эти части, двигаясь через вещество, постепенно замедлились и остановились. Теперь их масса m 0 . Сколько энергии они отдали веществу? По теореме, доказанной раньше, каждый кусок отдаст энергию (mω — m 0)с 2 . Она перейдет в разные формы, например в теплоту, в потенциальную энергию и т. д. Так как 2m ω =M, то высвободившаяся энергия Е = (М—2m 0)с 2 . Это уравнение было использовано для оценки количества энергии, которое могло бы выделиться при ядерном расщеплении в атомной бомбе (хотя части бомбы не точно равны, но примерно они равны). Масса атома урана была известна (ее измерили заранее), была известна и масса атомов, на которые она расщеплялась,— иода, ксенона и т. д. (имеются в виду не массы движущихся атомов, а массы покоя). Иными словами, и М и то были известны. Вычтя одно значение массы из другого, можно прикинуть, сколько энергии высвободится, если М распадется «пополам». По этой причине все газеты считали Эйнштейна «отцом» атомной бомбы. На самом же деле под этим подразумевалось только, что он мог бы заранее подсчитать выделившуюся энергию, если бы ему указали, какой процесс произойдет. Энергию, которая должна высвободиться, когда атом урана подвергнется распаду, подсчитали лишь за полгода до первого прямого испытания. И как только энергия действительно выделилась, ее непосредственно измерили (не будь формулы Эйнштейна, энергию измерили бы другим способом), а с момента, когда ее измерили, формула уже была не нужна. Это отнюдь не принижение заслуг Эйнштейна, а скорее критика газетных высказываний и популярных описаний развития физики и техники. Проблема, как добиться того, чтобы процесс выделения энергии прошел эффективно и быстро, ничего общего с формулой не имеет.

Формула имеет значение и в химии. Скажем, если бы мы взвесили молекулу двуокиси углерода и сравнили ее массу с массой углерода и кислорода, мы бы могли определить, сколько энергии высвобождается, когда углерод и кислород образуют углекислоту. Плохо только то, что эта разница масс так мала, что технически опыт очень трудно проделать.

Теперь обратимся к такому вопросу: нужно ли отныне добавлять к кинетической энергии m 0 с 2 и говорить с этих пор, что полная энергия объекта равна mс 2 ? Во-первых, если бы нам были видны составные части с массой покоя то внутри объекта М, то можно было бы говорить, что часть массы М есть механическая масса покоя составных частей, а другая часть — их кинетическая энергия, третья — потенциальная. Хотя в природе и на самом деле открыты различные частицы, с которыми происходят как раз такие реакции (реакции слияния в одну), однако никакими способами невозможно при этом разглядеть внутри М какие-то составные части. Например, распад K-мезона на два пиона происходит по закону (16.11), но бесмысленно считать, что он состоит из 2π, потому что он распадается порой и на Зπ!

А поэтому возникает новая идея: нет нужды знать, как тела устроены изнутри; нельзя и не нужно разбираться в том, какую часть энергии внутри частицы можно считать энергией покоя тех частей, на которые она распадется. Неудобно, а порой и невозможно разбивать полную энергию mс 2 тела на энергию покоя внутренних частей, их кинетическую и потенциальную энергии; вместо этого мы просто говорим о полной энергии частицы. Мы «сдвигаем начало отсчета» энергий, добавляя ко всему константу m 0 с 2 , и говорим, что полная энергия частицы равна ее массе движения, умноженной на с 2 , а когда тело остановится, его энергия есть его масса в покое, умноженная на с 2 .

И наконец, легко обнаружить, что скорость v, импульс Р и полная энергия Е довольно просто связаны между собой. Как это ни странно, формула m=m 0 /√(1 - v 2 /c 2) очень редко употребляется на практике. Вместо этого незаменимыми оказываются два соотношения, которые легко доказать.

Согласно представлениям классической механики, масса тела есть величина постоянная. Однако в конце XIX в. на опытах с электронами было установлено, что масса тела зависит от скорости его движения, а именно возрастает с увеличением v по закону

где - масса покоя , т.е. масса материальной точки, измеренная в той инерциальной системе отсчета, относительно которой точка покоится; m - масса точки в системе отсчета, относительно которой она движется со скоростью v .

оказывается инвариантным по отношению к преобразованиям Лоренца, если в нем справа стоит производная от релятивистского импульса :

Из приведенных формул следует, что при скоростях, значительно меньших скорости света в вакууме, они переходят в формулы классической механики. Следовательно, условием применимости законов классической механики является условие . Законы Ньютона получаются как следствие СТО для предельного случая . Таким образом, классическая механика - это механика макротел, движущихся с малыми (по сравнению со скоростью света в вакууме) скоростями.

Вследствие однородности пространства в релятивистской механике выполняется закон сохранения релятивистского импульса : релятивистский импульс замкнутой системы тел сохраняется, т.е. не изменяется с течением времени.

Изменение скорости тела в релятивистской механике влечет за собой изменение массы, а, следовательно, и полной энергии, т.е. между массой и энергией существует взаимосвязь. Эту универсальную зависимость - закон взаимосвязи массы и энергии - установил А. Эйнштейн:

Из (5.13) следует, что любой массе (движущейся m или покоящейся ) соответствует определенное значение энергии. Если тело находится в состоянии покоя, то его энергия покоя

Энергия покоя является внутренней энергией тела , которая складывается из кинетических энергий всех частиц, потенциальной энергии их взаимодействия и суммы энергий покоя всех частиц.

В релятивистской механике не справедлив закон сохранения массы покоя. Именно на этом представлении основано объяснение дефекта массы ядра и ядерных реакций.

В СТО выполняется закон сохранения релятивистской массы и энергии : изменение полной энергии тела (или системы) сопровождается эквивалентным изменением его массы:

Таким образом, масса тела, которая в классической механике является мерой инертности или гравитации, в релятивистской механике является еще и мерой энергосодержания тела.


Физический смысл выражения (5.14) состоит в том, что существует принципиальная возможность перехода материальных объектов, имеющих массу покоя, в электромагнитное излучение, не имеющее массы покоя; при этом выполняется закон сохранения энергии.

Классическим примером этого является аннигиляция электрон-позитронной пары и, наоборот, образование пары электрон-позитрон из квантов электромагнитного излучения:

В релятивистской динамике значение кинетической энергии Е к определяется как разность энергий движущегося Е и покоящегося Е 0 тела:

При уравнение (5.15) переходит в классическое выражение

Из формул (5.13) и (5.11) найдем релятивистское соотношение между полной энергией и импульсом тела:

Закон взаимосвязи массы и энергии полностью подтвержден экспериментами по выделению энергии при протекании ядерных реакций. Он широко используется для расчета энергического эффекта при ядерных реакциях и превращениях элементарных частиц.

Краткие выводы:

Специальная теория относительности - это новое учение о пространстве и времени, пришедшее на смену классическим представлениям. В основе СТО лежит положение, согласно которому никакая энергия, никакой сигнал не может распространяться со скоростью, превышающей скорость света в вакууме. При этом скорость света в вакууме постоянна и не зависит от направления распространения. Это положение принято формулировать в виде двух постулатов Эйнштейна - принципа относительности и принципа постоянства скорости света.

Область применения законов классической механики ограничена скоростью движения материального объекта: если скорость тела соизмерима со скоростью света, то необходимо использовать релятивистские формулы. Таким образом, скорость света в вакууме является критерием, определяющим границу применимости классических законов, т.к. она является максимальной скоростью передачи сигналов.

Зависимость массы движущегося тела от скорости движения определяется соотношением

Релятивистский импульс тела и соответственно уравнение динамики его движения

Изменение скорости в релятивистской механике влечет за собой изменение массы, а, следовательно, и полной энергии:

В СТО выполняется закон сохранения релятивистской массы и энергии: изменение полной энергии тела сопровождается эквивалентным изменением ее массы:

Физический смысл этого соотношения заключается в следующем: существует принципиальная возможность перехода материальных объектов, имеющих массу покоя, в электромагнитное излучение, не имеющее массы покоя; при этом выполняется закон сохранения энергии. Это соотношение является важнейшим для ядерной физики и физики элементарных частиц.

Вопросы для самоконтроля и повторения

1. В чем заключается физическая сущность механического принципа относительности? Чем отличается принцип относительности Галилея от принципа относительности Эйнштейна?

2. Каковы причины создания специальной теории относительности?

3. Сформулируйте постулаты специальной теории относительности.

4. Запишите преобразования Лоренца. При каких условиях они переходят в преобразования Галилея?

5. В чем заключается релятивистский закон сложения скоростей?

6. Как в релятивистской механике масса движущегося тела зависит от скорости?

7. Запишите основное уравнение релятивистской динамики. Чем оно отличается от основного закона ньютоновской механики?

8. В чем заключается закон сохранения релятивистского импульса?

9. Как выражается кинетическая энергия в релятивистской механике?

10. Сформулируйте закон взаимосвязи массы и энергии. В чем его физическая сущность?с . Определить его релятивистский импульс и кинетическую энергию .

Дано: кг; v =0,7c ; с =3· 10 8 м/с.

Найти: р, E k .

Релятивистский импульс протона вычислим по формуле

Кинетическая энергия частицы

где Е - полная энергия движущегося протона; Е 0 - энергия покоя.

Ответ: р = 5,68·10 -19 Н·с; E k = 7,69·10 -11 Дж.

Задачи для самостоятельного решения

1. С какой скоростью должен двигаться стержень, чтобы размеры его в направлении движения сократились в три раза?

2. Частица движется со скоростью v = 8 c . Определить отношение полной энергии релятивистской частицы к ее энергии покоя.

3. Определить скорость, при которой релятивистский импульс частицы превышает ее ньютоновский импульс в три раза.

4. Определить релятивистский импульс электрона, кинетическая энергия которого E k = 1 ГэВ.

5. На сколько процентов увеличится масса электрона после прохождения им в ускоряющем электрическом поле разности потенциалов 1,5 МВ?

12.4. Энергия релятивистской частицы

12.4.1. Энергия релятивистской частицы

Полная энергия релятивистской частицы складывается из энергии покоя релятивистской частицы и ее кинетической энергии:

E = E 0 + T ,

Эквивалентность массы и энергии (формула Эйнштейна) позволяет определить энергию покоя релятивистской частицы и ее полную энергию следующим образом:

  • энергия покоя -

E 0 = m 0 c 2 ,

где m 0 - масса покоя релятивистской частицы (масса частицы в собственной системе отсчета); c - скорость света в вакууме, c ≈ 3,0 ⋅ 10 8 м/с;

  • полная энергия -

E = mc 2 ,

где m - масса движущейся частицы (масса частицы, движущейся относительно наблюдателя с релятивистской скоростью v ); c - скорость света в вакууме, c ≈ 3,0 ⋅ 10 8 м/с.

Связь между массами m 0 (масса покоящейся частицы) и m (масса движущейся частицы) определяется выражением

Кинетическая энергия релятивистской частицы определяется разностью:

T = E − E 0 ,

где E - полная энергия движущейся частицы, E = mc 2 ; E 0 - энергия покоя указанной частицы, E 0 = m 0 c 2 ; массы m 0 и m связаны формулой

m = m 0 1 − v 2 c 2 ,

где m 0 - масса частицы в той системе отсчета, относительно которой частица покоится; m - масса частицы в той системе отсчета, относительно которой частица движется со скоростью v ; c - скорость света в вакууме, c ≈ 3,0 ⋅ 10 8 м/с.

В явном виде кинетическая энергия релятивистской частицы определяется формулой

T = m c 2 − m 0 c 2 = m 0 c 2 (1 1 − v 2 c 2 − 1) .

Пример 6. Скорость релятивистской частицы составляет 80 % от скорости света. Определить, во сколько раз полная энергия частицы больше ее кинетической энергии.

Решение . Полная энергия релятивистской частицы складывается из энергии покоя релятивистской частицы и ее кинетической энергии:

E = E 0 + T ,

где E - полная энергия движущейся частицы; E 0 - энергия покоя указанной частицы; T - ее кинетическая энергия.

Отсюда следует, что кинетическая энергия является разностью

T = E − E 0 .

Искомой величиной является отношение

E T = E E − E 0 .

Для упрощения расчетов найдем величину, обратную искомой:

T E = E − E 0 E = 1 − E 0 E ,

где E 0 = m 0 c 2 ; E = mc 2 ; m 0 - масса покоя; m - масса движущейся частицы; c - скорость света в вакууме.

Подстановка выражений для E 0 и E в отношение (T /E ) дает

T E = 1 − m 0 c 2 m c 2 = 1 − m 0 m .

Связь между массами m 0 и m определяется формулой

m = m 0 1 − v 2 c 2 ,

где v - скорость релятивистской частицы, v = 0,80c .

Выразим отсюда отношение масс:

m 0 m = 1 − v 2 c 2

и подставим его в (T /E ):

T E = 1 − 1 − v 2 c 2 .

Рассчитаем:

T E = 1 − 1 − (0,80 c) 2 c 2 = 1 − 0,6 = 0,4 .

Искомой величиной является обратное отношение

E T = 1 0,4 = 2,5 .

Полная энергия релятивистской частицы при указанной скорости превышает ее кинетическую энергию в 2,5 раза.

Второй закон Ньютона гласит, что производная импульса частицы (материальной точки) по времени равна результирующей силе, действующей на частицу (см. формулу (9.1)). Уравнение второго закона оказывается инвариантным относительно преобразований Лоренца, если под импульсом подразумевать величину (67.5). Следовательно, релятивистское выражение Второго закона Ньютона имеет вид

Следует иметь в виду, что соотношение в релятивистском случае неприменимо, причем ускорение w и сила F, вообще говоря, оказываются неколлинеарными.

Заметим, что импульс, ни сила не являются инвариантными величинами. Формулы преобразования компонент импульса при переходе от одной инерциальной системы отсчета к другой будут получены в следующем параграфе. Формулы преобразования компонент силы мы дадим без. вывода:

( скорость частицы в системе К). Если в системе К действующая на частицу сила F перпендикулярна к скорости частицы V, скалярное произведение FV равно нулю и первая из формул (68.2) упрощается следующим образом:

Чтобы найти релятивистское выражение для энергии, поступим так же, как мы поступили в § 19. Умножим уравнение (68.1) на перемещение частицы . В результате получим

Правая часть этого соотношения дает работу совершаемую над частицей за время . В § 19 было показано, что работа результирующей всех сил идет на приращение кинетической энергии частицы (см. формулу ). Следовательно, левая часть соотношения должна быть истолкована как приращение кинетической энергий Т частицы за время . Таким образом,

Преобразуем полученное выражение, приняв во внимание, что (см. (2.54)):

Интегрирование полученного соотношения дает

(68.4)

По смыслу кинетической энергии она должна обращаться в нуль при Отсюда для константы получается значение, равное Следовательно, релятивистское выражение для кинетической энергии частицы имеет вид

В случае малых скоростей формулу (68.5) можно преобразовать следующим образом:

Мы пришли к ньютоновскому выражению для кинетической энергии частицы. Этого и следовало ожидать, поскольку при скоростях, много меньших скорости света, все формулы релятивистской механики должны переходить в соответствующие формулы ньютоновской механики.

Рассмотрим свободную частицу (т. е. частицу, не подверженную действию внешних сил), движущуюся со скоростью v. Мы выяснили, что эта частица обладает кинетической энергией, определяемой формулой (68.5). Однако имеются основания (см. ниже) приписать свободной частице, кроме кинетической энергии (68.5), дополнительную энергию, равную

Таким образом, полная энергия свободной частицы определяется выражением . Приняв во внимание (68.5), получим, что

При выражение (68.7) переходит в (68.6). Поэтому называют энергией покоя. Эта энергия представляет собой внутреннюю энергию частицы, не связанную с движением частицы как целого.

Формулы (68.6) и (68.7) справедливы не только для элементарной частицы, но и для сложного тела, состоящего из многих частиц. Энергия такого тела содержит в себе, помимо энергий покоя входящих в его состав частиц также кинетическую энергию частиц (обусловленную их движением относительно центра масс тела) энергию их взаимодействия друг с другом. В энергию покоя, как и в полную энергию (68.7), не входит потенциальная энергия тела во внешнем силовом поле.

Исключив из уравнений (67.5) и (68.7) скорость v (уравнение. (67.5) нужно взять в скалярном виде), получим выражение полной энергии частицы через импульс р:

В случае, когда эту формулу можно представить в виде

Полученное выражение отличается от ньютоновского выражения для кинетической энергии слагаемым

Заметим, что из сопоставления выражений (67.5): и (68.7) вытекает формула

Поясним, почему свободной частице следует приписывать энергию (68.7), а не только кинетическую энергию (68.5). Энергия по своему смыслу должна быть сохраняющейся величиной. Соответствующее рассмотрение показывает, что при столкновениях частиц сохраняется сумма (по частицам) выражений вида (68.7), в то время как сумма выражений (68.5) оказывается несохраняющейся. Невозможно удовлетворить требованию сохранения энергии во всех инерциальных системах отсчета, если не учитывать энергию покоя (68.6) в составе полной энергии.

Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: